

Operating window exploration of continuous reaction plant

Valentin Khaydarov (Al-incubator lab at TU Dresden), Jan Schöneberger (Capital-Gain Consultants), Stefanie Blumenschein, Michael Schleehahn (Merck KGaA)

Continuous reaction plant

■ Work package 5.3 — Focus on production scale

Use case description

- Title: Continuous reaction plant MERCK
- Goal: Increase of process efficiency and stability by finding a suitable operating window
- Description:
 - Plug flow reactor (continuous, steady state process) with two reaction steps in a tube reactor and hydrolysis step
 - Multipurpose plant in production scale
 - During a production run detrimental shut-downs occur due to exceeding of critical values (e.g. pressure)

Proprietary Tools

CHEMCAD and SIMCA

Transfer learning [1]

Motivation: usage of existing knowledge gained from simulation models from engineering phase or data gathered from lower scaled plants in order to reduce amount of data required for model

Data characteristics and methods

- Data characteristics:
 - Design data (P&IDs)
 - Process data (temperature, pressure, flow rate,...)
 - Product data (concentration and yield)
- Methods:
 - Multivariate data analysis, Multivariate sensitivity analysis
 - SIMCA: Multivariate data analysis
 - Process modelling with the depth required
 - CHEMCAD: Process modelling and simulation

Approach

- Based on historical process data, the operating range will be investigated to increase process efficiency and stability.
- A multivariate data analysis will be conducted to identify the influence of coupled parameters and to understand correlations between different parameters.
- A comprehensive process simulation will be set up to take process phenomena like pressure drop, hot spots, residence time, heat transfer, etc. into account.
- Based on this prework, a sensitivity analysis will be conducted.
- Combining these insights will facilitate to reduce the amount of false alarms, to warn earlier and more focused and to integrate maintenance steps in a more efficient in the operation procedure.

[1] Kevin McGuineness - Transfer Learning (D2L4 Insight@DCU Machine Learning Workshop 2017)

www.keen-plattform.de

Contact

Michael Schleehahn

Merck KGaA

www.merckgroup.com

michael.schleehahn@merckgroup.com

Supported by:

on the basis of a decision by the German Bundestag